
Wire Cell Toolkit Manual

Brett Viren

April 15, 2017

Contents

1 Installation 2

1.1 Installation . 2
1.1.1 Toolkit installation . 2
1.1.2 Guide for installation of dependencies 5
1.1.3 Release management 5

2 Con�guration 5

2.1 Introduction and Scope . 5
2.2 Con�guration from a user point of view user 6

2.2.1 File formats . 6
2.2.2 Basic command line 7
2.2.3 Diving into JSON . 7
2.2.4 Limitations of JSON 8
2.2.5 Learning Jsonnet . 9
2.2.6 Speci�c detector support 10

2.3 TODO Con�guration from a developer point of view devel 10

3 Internals 11

3.1 Intro . 11
3.2 Packages . 11

3.2.1 Names . 11
3.2.2 Dependencies . 12
3.2.3 Package structure . 12
3.2.4 Build package . 13
3.2.5 Adding a new code package 13

3.3 Coding conventions . 14
3.3.1 C++ code formatting 14
3.3.2 C++ namespaces . 15

1

3.4 Interfaces . 15
3.5 Components . 16
3.6 Con�guration . 17
3.7 Execution Models . 18

3.7.1 Ad-hoc . 18
3.7.2 Component . 18
3.7.3 Interface . 18
3.7.4 Data �ow programming 18

4 Packages 18

4.1 Utilities . 18
4.1.1 Units . 18
4.1.2 Persistence . 18
4.1.3 Etc . 18

4.2 Interfaces . 19
4.2.1 Data . 19
4.2.2 Nodes . 19
4.2.3 Misc . 19

4.3 Simulation . 19
4.3.1 Depositions . 19
4.3.2 Drifting . 19
4.3.3 Response . 19
4.3.4 Digitizing . 19

1 Installation

1.1 Installation

The Wire Cell Toolkit (WCT) should be easy to build on any POSIX'y
system with a recent C++ compiler. This section describes how to build
releases and development branches, it gives guidance for supplying the few
software dependencies, and documents how releases are made.

1.1.1 Toolkit installation

Warning: This assumes you already have available the required
dependencies. See section 1.1.2.

Installation requires four steps:

1. get the source

2

2. con�gure the source

3. build the code

4. install the results

Source code WCT source is composed of several packages (see section 4)
and all source is available from the Wire Cell GitHub organization. Releases
of each package are made and documented on GitHub (eg here) and can be
downloaded as archives. However, using git to assemble a working source
area is recommended and easier. Releases and development branches are
handled slightly di�erently.

To obtain a release requires no GitHub authentication:

$ git clone --recursive --branch 0.5.x https://github.com/WireCell/wire-cell-build.git

This gets the tip of the release branch for the 0.5.x series. If a speci�c
release is desired a few more commands are needed. For example, if the
0.5.0 release that started the series is wanted:

$ git checkout -b 0.5.0 0.5.0

$ git submodule init

$ git submodule update

$ git submodule foreach git checkout -b 0.5.0 0.5.0

To obtain the development branch requires SSH authentication with
GitHub:

$ git clone --recursive git@github.com:WireCell/wire-cell-build.git wct

Which ever way the source is obtained, enter the resulting directory

$ cd wire-cell-build/

Hint: At some time later if there is a need to switch between HTTP or SSH
a switch-git-urls script is available in this directory.

Con�guring the source At a minimum, the source must be con�gured
with an installation location for the build results and to allow it to �nd its
dependencies. This, and the remaining steps are done with the provided wcb

script which is an instance of Waf.

$./wcb --prefix=/path/to/install configure

3

https://github.com/WireCell/
https://github.com/WireCell/wire-cell-build/releases
https://waf.io/

This will print the results of the attempts to detect required and optional
dependencies. Missing but optional dependencies will not cause failure. See
below for guidance on installing dependencies if this step fails or if desired
optional dependencies are not found.

Dependencies are �rst located in standard system locations, barring that
those that are traditionally installed with support for pkg-config may be
found by suitably setting the PKG_CONFIG_PATH environment variable. To
force a particular location for any given dependency a --with-* option may
be used.

Note: As shown in the example below, the �ags to locate Boost are slightly
di�erent.

$./wcb configure --prefix=/path/to/install \

--boost-includes=$WCT_EXTERNALS/include --boost-libs=$WCT_EXTERNALS/lib --boost-mt \

--with-eigen=$WCT_EXTERNALS --with-jsoncpp=$WCT_EXTERNALS --with-tbb=$WCT_EXTERNALS \

--with-root=$WCT_EXTERNALS --with-fftw=$WCT_EXTERNALS --with-root=$WCT_EXTERNALS

This example assumes all externals are available in a directory set by the
WCT_EXTERNALS variable. This variable is not used by the build and is only
used to make this example brief.

Building the source After a successful source con�gure step, the results
are cached and any long command line need not be repeated. To build the
source simply run:

$./wcb

If there are build failures more information can be obtained by repeating the
build with more verbosity:

$./wcb -vv

The build will try to run tests which can be avoided to save time:

$./wcb --notests

Install the results To install the build results into the location given by
--prefix simply issue:

$./wcb install

4

Other build commands These other commands may be useful:

$./wcb clean # clean build products

$./wcb distclean # also clean configuration

build with debug symbols

$./wcb configure --build-debug=-ggdb3 [...]

to save some time, just

rebuild the given test

and don't run any tests

$./wcb --notests --target=test_xxx

$./wcb --help # see more options.

1.1.2 Guide for installation of dependencies

Manual DIY

Spack Installation and setup with Spack Views or with EM.

UPS Setup with UPS.

1.1.3 Release management

2 Con�guration

2.1 Introduction and Scope

As the Wire Cell Toolkit (WCT) is a toolkit, it is up to the application to
provide some mechanism for the user to provide con�guration information.
Users of an application not provided by the WCT itself should refer to its
documentation.

WCT itself provides a such a mechanism which is exposed to the user by
the wire-cell command line application. Any application may easily adopt
this same mechanism by making use of the WireCell::ConfigManager class.

This WCT con�guration mechanism is described here from the point of
view of user and developer. Details for each role are given in the following
sections. However, both user and developer must understand one aspect of
WCT internal design in order to understand con�guration. One aspect of
WCT is that an application is composed of a number of component classes.
Components work together in some way to enact the job of the application.
A component is speci�cally a C++ class which implements one or more
interface base classes. One interface pertinent here is IConfigurable. A

5

component that implements this interface is called a con�gurable component

or just con�gurable. A con�gurable then is the atomic unit of WCT con�g-
uration and this unit is re�ected in what the user provides for con�guration
and what developers should expect if they write con�gurable components.

The user then provides an ordered list of con�guration objects or simply
con�gurations. Each con�guration is associated by WCT with exactly one
instance of a con�gurable component class. This association is done via two
string identi�ers. The pair are also used to initially construct and later locate
the instance of any type of WCT component (not just con�gurables):

type speci�es the �con�gurable type� which often matches the C++ class
name with any C++ namespace removed. However, developers of con-
�gurable components are free to chose any unique type name.

name speci�es a �con�gurable instance�, that is an C++ object instance of
the C++ class associated with the con�gurable type identi�er. The
name is free form and may be omitted in which case it defaults to
the empty string. A speci�c name is needed if multiple instances are
required or if multiple con�gurables require sharing a component.

Finally, con�gurations have a third attribute:

data speci�es a data structure following a schema speci�c to the con�g-
urable type. This is the �payload� that WCT gives to the instance of
the con�gurable component.

In the next section, WCT user-con�guration support is described. The
following section gives guidance to developers who wish to write their own
con�gurable components.

2.2 Con�guration from a user point of view user

Users of the WCT command line interface wire-cell or any WCT appli-
cation that uses WireCell::ConfigManager can provide con�guration infor-
mation in the form of one or more �les. This �les express the same ordered
list of con�guration objects as described above.

2.2.1 File formats

WCT supports two related con�guration �le formats: JSON and Jsonnet.
Of the two, JSON is more fundamental while Jsonnet provides a way to

6

http://www.json.org/
http://jsonnet.org/

better organize and construct complex con�gurations. Jsonnet support is a
compile-time option. The stand-alone jsonnet program may also be used
to evaluate Jsonnet into JSON.

2.2.2 Basic command line

A user gives one or more con�guration �les to the wire-cell application
each with a -c �ag:

$ wire-cell -c myparameters.cfg [...]

If a relative path is given, the �le will be searched for starting in the cur-
rent working directory and then in each directory listed in a WIRECELL_PATH

environment variable, if given. When multiple con�guration are used, their
top-level arrays are conceptually concatenated in the order on which they
are given on the command line.

The user can also dump out the hard-coded default con�guration for one
or more components:

$ wire-cell \

-p <plugin> \

-D <component1> \

-D <component2> \

--dump-file=mydefaults.cfg

Here the components are speci�ed by their �type� identi�er as described
above. As the example shows, a plugin must be given. The wire-cell

application itself does not �know� about any components as they are all
dynamically loaded when needed. However, the application must be told a
collection of plugins in which to �nd components. A plugin typically takes
the name of its shared library with the lib pre�x and .so extension removed.

The user must know what components to dump. There is no way for
the application to iterate over all possible components. In general, it is up
to the provider of a plugin to catalog what component types it provides.
WCT provides a simple script that will search the WCT source, determine
the components and dump them out using wire-cell. Result of this dump,
possibly out of date, is available in the wire-cell-cfg repository.

2.2.3 Diving into JSON

An example con�guration dump from this command

$ wire-cell -D TrackDepos -p WireCellGen

7

https://github.com/WireCell/wire-cell-cfg/blob/master/scripts/generate-defaults.sh
https://github.com/WireCell/wire-cell-cfg/tree/master/defaults

produces:

[

{

"data" : {

"clight" : 1,

"step_size" : 0.10000000000000001,

"tracks" : []

},

"name" : "",

"type" : "TrackDepos"

}

]

Here we see an array holding one element which is an object with the type,
(instance) name and payload data structure as described above. If wire-cell
were to load this con�guration it would create a default instance of the
component type TrackDepos which happens to correspond to the C++ class
WireCell::Gen::TrackDepos (see the simulation package manual for more
information). This component is responsible for produces deposition (IDepo)
objects using a simple linear source model.

The tracks array in this example is empty and no depositions would
be produced. The user most certainly should specify a nonempty set of
tracks. In principle, the user may produces a huge tracks array. WCT
support bzip2 compressed JSON �les (see the section on persistence in the
util package manual.

2.2.4 Limitations of JSON

As the complexity of a wire-cell job grows, hand crafting JSON becomes
tedious and error prone. Splitting the �les and/or using WIRECELL_PATH can
provide some rudimentary means of organizing a large, complex con�gura-
tion.

However, a user will quickly outgrow direct authoring of JSON �les. An
accomplished one will likely turn to some form of JSON generation using a
more expressive language. Or, some con�guration may need to be extracted
or converted from other source. For example, Geant4 steps might be ex-
tracted and fed into TrackDepos as a long tracks array. The user is free to
generate JSON in this manner in any way they desire as long as the result
conforming to the required schema.

8

./gen.org
./util.org
./util.org

Another limitation is that any numerical quantities must be expressed
in the base units used by the WCT system of units (see the section on units
in the Utilities manual). This places a burden on the con�guration author
and is a source of error.

WCT provides a more powerful JSON-like con�guration �le format as
described next.

2.2.5 Learning Jsonnet

WCT provides support for con�guration �les following the Jsonnet data
templating language. This language is evaluated to produce JSON. If WCT
is compiled with support it will evaluation Jsonnet �les directly. Otherwise
the user may install and run the jsonnet command line program to produce
JSON.

To learn how to write Jsonnet in general, the user should refer to its
documentation which is excellent. There is no one right way to write Json-
net, however, the wire-cell-cfg package provides a number of examples and
support �les that can help the user craft their con�guration in Jsonnet. In
particular the WCT system of units and some common data structures used
by WCT are exported to Jsonnet in wirecell.jsonnet. Some of this exported
functionality is illustrated below.

WCT locates Jsonnet �les as it does JSON �les and in particular using
the environment variable WIRECELL_PATH. However, it does not (currently)
support compressed Jsonnet �les.

System of units Wire Cell provides an internal system of units as de-
scribed in the section on units in the Utilities manual). As stated above,
users must take care to give numerical quantities JSON in base WCT units.
If writing Jsonnet this is less trouble as once can label a quantity by multi-
plying it with a symbolic unit. For example:

local wc = import "wirecell.jsonnet";

[

{

type:"TrackDepos",

data: {

step_size: 1.0 * wc.millimeter,

// or could abreviate with wc.mm

}

}

]

9

./util.org
./util.org
http://jsonnet.org/
http://jsonnet.org/
https://github.com/wirecell/wire-cell-cfg
https://github.com/WireCell/wire-cell-cfg/blob/master/wirecell.jsonnet
./util.org

Functions Some data sub-structures are needed in multiple laces and it
can be laborious to write them by hand. Jsonnet provides functions to assist
in this. A number of functions are de�ned to assist in representing common
data types. For example point() and ray():

{

// ...

tracks : [wc.ray(wc.point(10,0,0,wc.cm),

wc.point(100,10,10,wc.cm))]

},

Default Structures Some common structures are de�ned with default
objects so that they may be extended/overridden. For example, the Node

object de�nes a default type, name and port to be used in a graph connec-
tion. It is typical to override at least the type:

graph:[

{

tail: wc.Node {type:"TrackDepos"},

head: wc.Node {type:"DumpDepos"}

},

//...

]

Commas One of the most irritating aspect of crafting JSON �les by hand
is that any array or object must not have a internal trailing comma. Jsonnet
allows this otherwise extraneous comma. For this reason alone and if no
other features are used, writing Jsonnet is worth the added dependency!

2.2.6 Speci�c detector support

The wire-cell-cfg package also provides support for popular LArTPC de-
tectors. You can �nd these �les under a directory named for the experiment
(such as ./uboone/).

2.3 TODO Con�guration from a developer point of viewde-

vel

For the C++ part of developing WCT components or applications the de-
veloper should refer to the con�guration section in the manual on WCT
Internals.

10

./uboone/
./internals.org
./internals.org

In addition, a developer is encouraged to provide Jsonnet �les that ab-
stract away any less important details and give users a simpli�ed way to
con�gure the developers components.

In particular, if the developer writes multiple components, an applica-
tion component or a component that refers to another component, working
example con�guration �les should be provided.

3 Internals

3.1 Intro

This doc describes the Wire Cell Toolkit (WCT) core internal structure and
support facilities. The �batteries included� or reference implementations that
are also provided as part of the toolkit are documented in the individual
package manuals.

3.2 Packages

The WCT is composed of a number of packages. Each package has an asso-
ciated with a Git source repository. Most packages produce a shared library,
which may also be a WCT plugin library, C++ header �les, some number of
main or test applications. Others include a single package holding all Python
code in various modules, a package providing support for developing WCT
con�guration �les and the documentation package holding this document.
One special type of package is a build package described more in section on
the build package.

3.2.1 Names

Package repositories are named like wire-cell-<name> where <name> is some
short identi�er giving indication of the main scope of the package. In the
documentation the wire-cell- pre�x is often dropped and only this short
name is used.

If a package produces a shared library it should be named in CamelCase

with a pre�x WireCell. For example the gen package produces a library
libWireCellGen.so. As a plugin name or an entry in the build system, the
lib and .so are dropped. If the package has public header �les to expose to
other packages they should use this same name for a subdirectory in which
to hold them. Package layout is described move below.

11

3.2.2 Dependencies

Some of the C++ packages are designated as core packages. These include
the packages providing the toolkit C++ structure (described later in this doc-
ument) as well as the reference implementations (eg, gen, sigproc). These
packages have strict requirements on what dependencies may be introduced
and in particular their shared libraries are not allowed to depend on ROOT
(although their apps and tests are, see sections 3.2.3 and 3.2.4).

The base package is util and it must not depend on any other WCT
package. The next most basic is iface and it must not depend on any other
WCT except util. Core implementation packages such as gen or sigproc
may depend on both but should not depend on each other.

Fixme: there is a need to factor some general utility routines and data
structures that depend on iface and which the implementation packages
should use that needs to be created.

WCT also provides a number of peripheral implementation packages,
which are free to have more dependencies, including ROOT, than �core�
packages. These are mostly for the purpose of providing WCT components
which provide �le I/O. The sst package in particular support the so called
celltree ROOT TTree format used by the Wire Cell prototype code.

Finally, there may be third-party implementation packages. They are
free to mimic WCT packages but WCT itself will not depend on them. They
should not make use of the WireCell:: C++ namespace.

3.2.3 Package structure

The WCT package layout and �le extensions must follow some conventions
in order to greatly simplify the build system. In the description below,
WireCellName is as described above.

src/*.cxx C++ source �le for libraries with .cxx extensions or private head-
ers

inc/WireCellName/*.h public/API C++ header �les with .h extensions

test/test_*.cxx main C++ programs named like test
*
.cxx, may also hold

Python, shell scripts, private headers

apps/*.cxx main application(s), one appname.cxx �le for each app named
appname, should be very limited in number

In the root of each C++ package directory must exist a �le called wscript_build.
It typically consist of a single line with a method call like:

12

bld.smplpkg('WireCellName', use='...')

The bld object is automagically available. If the package has no dependen-
cies then only the name is given. Most packages will need to specify some
dependencies via use or may specify a di�erent list of dependencies just for
any applications (using app_use) or for the test programs (via test_use).
Dependencies are transitive so one must only list those on which the package
directly depends.

Fixme: make a script that generates a dot �le and show the graph.

3.2.4 Build package

To actually build WCT see the section on toolkit installation. The build
system is based on Waf and uses the wcb command and a wscript �le
provided by the top level build package. Besides holding the main build
instructions this package aggregates all the other packages via Git's �sub-
module� feature. In principle, there may be more than one build package
maintained. This allows developers working on a subset to avoid having to
build unwanted code. In practice there is a single build package which is at:
https://github.com/wirecell/wire-cell-build.

3.2.5 Adding a new code package

To add a new code package to a build package from scratch, select a <name>

following guidance above and do something like:

$ mkdir <name>

$ cd <name>/

$ echo "bld.smplpkg('WireCell<Name>', use='WireCellUtil WireCellIface')" > wscript_build

$ git init

$ git add wscript_build

$ git commit -a -m "Start code package <name>"

Replace <name> with your package name. You can create and commit actual
code at this time as well following the layout in 3.2.3.

Now, make a new repository by going to the WireCell GitHub and click-
ing �New repository� button. Give it a name like wire-cell-<name>. Copy-
and-paste the two command it tells you to use:

$ git remote add origin git@github.com:WireCell/wire-cell-<name>.git

$ git push -u origin master

13

https::waf.io
https://github.com/wirecell/wire-cell-build
https://github.com/WireCell

If you made your initial package directory inside the build package move it
aside. Then, from the build package directory, add this new repository as a
Git submodule:

$ cd wire-cell-build/ # or whatever you named it

$ git submodule add -- git@github.com:WireCell/wire-cell-<name>.git <name>

$ git submodule update

$ git commit -a -m "Added <name> to top-level build package."

$ git push

In order to be picked up by the build the new package short name must be
added to the wscript �le.

3.3 Coding conventions

3.3.1 C++ code formatting

� Base indentation should be four spaces.

� Tabs should not be used.

� Opening braces should not be on a line onto themselves, closing braces
should be.

� Class names should be CamelCase, method and function names should
be snake_case, class data attributes should be pre�xed with m_ (signi-
fying �member�).

� Doxygen triple-slash /// or double-star /** */ comments must be
used for in-source reference documentation.

� Normal comments may be used for implementation documentation.

� Interface classes and their types and methods must each have a docu-
menting Doxygen comment.

� Header �les must have #ifndef/#define/#endif protection.

� The C++ using namespace keywordmust not be used at top �le scope
in a header.

� Unused headers should not be retained.

� Any =#include# need in an implementation �le but not the corre-
sponding header �le should not be in the header �le.

14

3.3.2 C++ namespaces

� All C++ code part of WCT proper and which may be accessed by
other packages (eg, exported via �public headers�) must be under the
WireCell:: namespace.

� WCT core code (util and iface packages) may exist directly under
WireCell:: but bare functions must be in a sub namespace.

� Non-core, WCT implementation code (eg contents of gen package)
must use secondary namespace (eg WireCell::Gen::).

� Any third-party packages providing WCT-based components or other-
wise depending on WCT should not use the WireCell:: namespace.

3.4 Interfaces

A central design aspect of the WCT is that all �important� functionality
which may have more than one implementation must be accessed via an
pure abstract interface class. All such interface classes are held in the iface
package. Interface classes should present a very limited number of purely
abstract methods that express a single, cohesive concept. Implementations
typically inherent from more than one interface. If two concepts are close
but not cohesive they are best put into two interface classes. Besides de�ning
the method interface, Interface classes may de�ne types. They may also be
templated.

After an implementation of an interface is instantiated and leaves local
scope it should be referenced only through one of its interfaces. It should
be held through an appropriately typed std::shared_ptr<> of which one
should be de�ned as ITheInterface::pointer.

Interfaces are used not only to access functionality but the data model
for major working data is de�ned in terms of interfaces inheriting from
WireCell::IData. Once an instance is created it is immutable.

Another category of interfaces are those which express the �node� con-
cept. They inherit from WireCell::INode. These require implementation
of an operator() method. Nodes make up the main unit of code. They
are somewhat equivalent to Algorithm concept from the Gaudi framework
where the operator() method is equivalent to Gaudi's execute() method.
They also require some additional instrumenting in order to participate in
the data �ow programming paradigm described below.

15

https://github.com/wirecell/wire-cell-iface

3.5 Components

Components are implementations an interface which itself inherits from the
WireCell::IComponponent interface class (this interface class is in util as
a special case due to dependency issues. �xme: needs to be solved with
a general package depending on both iface and =util). This inheritance
follows CRTP.

Components also must have some tooling added in their implementation
�le. This is in the form of a single CPP macro which generates a function
used to load a factory that can create and retain instances based on a type

name and an instance name. For WireCell::Gen::TrackDepos the tooling
looks like:

#include "WireCellUtil/NamedFactory.h"

WIRECELL_FACTORY(TrackDepos, WireCell::Gen::TrackDepos, WireCell::IDepoSource, WireCell::IConfigurable);

Note, this macro needs to appear before any using namespace directives.
The arguments to the macro are:

1. The �type name� which is typically the class name absent any names-
pace pre�xes. It must be unique across the entire WCT application.

2. The full class name.

3. A list of all interfaces that it implements.

A component may be retrieved as an interface using the named factory

pattern implemented in WCT. If the component has yet to be instantiated
it will be through this lookup. This is performed with code like:

#include "WireCellUtil/NamedFactory.h"

auto a = Factory::lookup<IConfigurable>("TrackeDepos");

// or

auto b = Factory::lookup<IConfigurable>("TrackeDepos","some instance name");

// or

auto c = Factory::lookup_tn<IConfigurable>("TrackeDepos:");

// or

auto d = Factory::lookup_tn<IConfigurable>("TrackeDepos:some instance name");

The four example di�er in if an instance name is known and if it is known sep-
arately from the type name or in the canonical join (eg as type:name). The
returned value in this example is a std::shared_ptr<const IConfigurable>.

16

https://en.wikipedia.org/wiki/Curiously_recurring_template_pattern

This example accesses the IConfigurable interface of TrackDepos. Not typ-
ically required by most code but there exists also a function lookup_factory()
to get the factory that constructs the component instance.

3.6 Con�guration

One somewhat special component interface is IConfigurable. A class in-
heriting from this interface is considered a con�gurable component such as
TrackDepos in the above example. It is required for any main application
using the WCT toolkit to adhere to the Wire Cell Toolkit Con�guration
Protocol. This is a contract by which the main application promises to do
the following:

1. Load in user-provided con�guration information (see the con�guration
section of hte manual)

2. Instantiate all con�gurables referenced in that con�guration.

3. Request the default con�guration object from each instance.

4. Update that object with, potentially partial, information provided by
the user.

5. Give the instance the updated con�guration object.

6. Do this before entering any execution phase of the application.

If the main application uses WireCell::Toolkit then the protocol can be
enacted with code similar to

using namespace WireCell;

ConfigManager cfgmgr();

// ... load up cfgmgr

for (auto c : cfgmgr.all()) {

string type = get<string>(c, "type");

string name = get<string>(c, "name");

auto cfgobj = Factory::lookup<IConfigurable>(type, name); // throws

Configuration cfg = cfgobj->default_configuration();

cfg = update(cfg, c["data"]);

cfgobj->configure(cfg);

}

17

FIXME: shouldn't we put this all inside ConfigManager?
Developers of new con�gurables should keep this protocol in mind and

should refer to existing con�gurables for various useful patterns to provide
their end of the exchange.

3.7 Execution Models

3.7.1 Ad-hoc

Direct calling of utility functions and concrete objects.

3.7.2 Component

Concrete components.

3.7.3 Interface

Using NamedFactory.

3.7.4 Data �ow programming

Using abstract DFP

4 Packages

4.1 Utilities

Introduction.

4.1.1 Units

Describe units.

4.1.2 Persistence

Describe support for persistent �les including compression and location.

4.1.3 Etc

. . . .

18

4.2 Interfaces

Brief overview but it's also in ./internals.org so don' t over do it.

4.2.1 Data

4.2.2 Nodes

4.2.3 Misc

4.3 Simulation

Scope and intro blah blah.

4.3.1 Depositions

4.3.2 Drifting

4.3.3 Response

4.3.4 Digitizing

19

./internals.org

	Installation
	Installation
	Toolkit installation
	Guide for installation of dependencies
	Release management

	Configuration
	Introduction and Scope
	Configuration from a user point of viewuser
	File formats
	Basic command line
	Diving into JSON
	Limitations of JSON
	Learning Jsonnet
	Specific detector support

	TODO Configuration from a developer point of viewdevel

	Internals
	Intro
	Packages
	Names
	Dependencies
	Package structure
	Build package
	Adding a new code package

	Coding conventions
	C++ code formatting
	C++ namespaces

	Interfaces
	Components
	Configuration
	Execution Models
	Ad-hoc
	Component
	Interface
	Data flow programming

	Packages
	Utilities
	Units
	Persistence
	Etc

	Interfaces
	Data
	Nodes
	Misc

	Simulation
	Depositions
	Drifting
	Response
	Digitizing

